Displacement operators relative to group matrices
نویسندگان
چکیده
منابع مشابه
Structured Matrices and the Algebra of Displacement Operators
Matrix calculations underlie countless problems in science, mathematics, and engineering. When the involved matrices are highly structured, displacement operators can be used to accelerate fundamental operations such as matrix-vector multiplication. In this thesis, we provide an introduction to the theory of displacement operators and study the interplay between displacement and natural matrix ...
متن کاملOn matrices with displacement structure: generalized operators and faster algorithms
For matrices with displacement structure, basic operations like multiplication, inversion, and linear system solving can all be expressed in terms of the following task: evaluate the product AB, where A is a structured n × n matrix of displacement rank α, and B is an arbitrary n × α matrix. Given B and a so-called generator of A, this product is classically computed with a cost ranging from O(α...
متن کاملLinear Operators on Matrices: Preserving Spectrum and Displacement Structure
In this paper we characterize those linear operators on general matrices that preserve singular values and displacement rank. We also characterize those linear operators on Hermitian matrices that preserve eigenvalues and displacement inertia.
متن کاملInversion of Displacement Operators
We recall briefly the displacement rank approach to the computations with structured matrices, which we trace back to the seminal paper by Kailath, Kung, and Morf [J. Math. Anal. Appl., 68 (1979), pp. 395–407]. The concluding stage of the computations is the recovery of the output from its compressed representation via the associated displacement operator L. The recovery amounts to the inversio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1992
ISSN: 0024-3795
DOI: 10.1016/0024-3795(92)90169-b